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Previous experiments on natural convection in a differentially heated porous layer 
with large lateral dimensions gave evidence for different configurations of flow. 
Depending on the values of the Rayleigh number, the inclination and the longitudinal 
extension of the layer, the three main structures observed correspond to a two- 
dimensional unicellular flow, polyhedral convective cells and longitudinal coils. In  
this paper there is a definition of the conditions necessary for these types of flow to 
exist using a linear stability theory and it is shown that the experimental1y.observed 
structures can be theoretically predicted by a three-dimensional numerical model 
based upon Galerkin's spectral method. Finally, the results of this model are used 
to show the influence of initial conditions on the setting up of the stationary flow. 

1. Introduction 
When an inclined porous layer saturated by a fluid satisfying the Boussinesq 

approximation is differentially heated, a wide range of two-dimensional, three- 
dimensional, stationary or non-stationary flow configurations appear. These con- 
figurations depend on the geometric dimensions of the porous media (aspect ratio 
A = L/H, B = M / H ,  with L the length, M the width and H the thickness), on the 
angle of inclination 9 and on the filtration Rayleigh number Ru*. 

As has been observed by Bories & Combarnous (1973), these flows respectively 
form : 

(i) polyhedral cells with a vertical axis when the inclination is between 0" and 15" 
approximately ; 

(ii) longitudinal rolls, facing towards the greatest slope superimposed onto the 
basic unicellular flow, for $ varying between 15" and $c such that Ra* cos $c = 4x2; 

(iii) a single two-dimensional cell (basic flow) which is maintained for angles greater 
than W", when $ > $c; 

(iv) an unsteady oscillating flow which is characterized by longitudinal rolls 
oscillating along their axis when the layer is inclined and the Ru* cos $ product is 
greater than about 250; 

(v) a clearly fluctuating flow for large values of the Rayleigh number. For a 
horizontal porous layer, this flow has been largely studied by Caltagirone (1975), 
Horne (1979), Schubert & Straus (1979), and Horne t Caltagirone (1980). 
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When the inclined angle is lower than, but close to, 15" hysteresis effects associated 
with various flow structures for given values of Ra*, 4, A and B have been established 
by Bories, Combarnous & Jaffrennou (1972). 

During the last ten years, several authors have endeavoured to deduce the criterion 
for transition between the different configurations of such flows. Jaffrennou and Bories 
(1974) determined the transition conditions between unicellular flow and flow with 
longitudinal coils, for a finite-extension layer, from a semi-empirical method based 
on a mean longitudinal thermal gradient deduced from the experiment. In  1975, 
Weber demonstrated that a three-dimensional perturbation is steadier than a 
two-dimensional one if 4 is close to zero. In  1980, in a study devoted to the analysis 
of the convection in slightly inclined porous layers, Walch & Dulieu put forward 
solutions corresponding to reverse unicellular flow for angle values of less than 7". 
The existence of different flow configurations and the transition between them was 
also investigated by means of two- and three-dimensional numerical simulations 
(Chan, Ivey & Barry 1970; Walch 1980; Caltagirone & Bories 1980) using Galerkin's 
spectral method or finite-difference methods. 

Despite the rather numerous works on the study of convective motions in an 
inclined porous layer, the results obtained are still very scattered and require 
completion in many areas. Three of them will be studied in particular in this paper : 

(i) transition between the flows in polyhedral cells and in longitudinal coils; 
(ii) transition between the unicellular flow and the longitudinal-coils flow for 

finite parameters of the porous layer ; 
(iii) numerical simulation of the three-dimensional flows in cavities whose 

parameters A and B are close to those corresponding to the experimental 
observations. 

2. Statement of the problem 
Let us consider a porous layer of height H ,  where lateral dimensions L and M define 

the two parameters A = L/H and B = MIL.  This layer, which is inclined at an angle 
4 with respect to the horizontal line and is composed of a solid substratum of porosity 
E, permeability K and heat capacity (pc),, is saturated by a fluid of thermal expansion 
coefficient 8, of viscosity v, heat capacity ( p ~ ) ~  and density p as a linear function of 
temperature. The porous media thus created has an apparent thermal conductivity 
A* and a heat capacity (pc)*  = ~ ( p c ) ~ +  (1 - E )  (pc), (Combarnous & Bories 1975). 

According to the Boussinesq approximation, the equations to which the phenomena 
are subject can be written in a non-dimensional form: 

v.v=o;  (1) 

-Vp+  Ra*kT- V = 0; 

_ _  aT V 2 T +  P V T  = 0; 
at 

where k = sin 4 e, + cos 4 e, stands for the unit gravitational acceleration vector, 
V = Ue, + Ve, + We, is the filtration velocity vector and Ra* = gB ATKH(pc),/vA* 
is the filtration Rayleigh number. 

The parallel surfaces containing the layers of height H are impermeable and 
isothermal, the lateral ones impermeable and insulating. The geometric configuration 
and boundary conditions are shown in figure 1. 
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FIQURE 1. The porous layer. 

3. Establishment of transition criteria 
The basic flow which develops in a differentially heated inclined porous layer is of 

a unicellular two-dimensional type. The structure of this flow as well as its stability 
are defined not only by the slope angle $ and the Rayleigh number Ra*, but also 
by the parameters A and B. In order to make comparison with the experimental 
results previously observed, the stability analysis will be respectively developed for 
A, B+ and A and B remaining finite. 

3.1. Stability of the jlow in an inJinite-extension layer 
If the porous layer is of infinite extension in the x- and y-directions, the solution 
corresponding to the basic unicellular flow can be readily found and leads to the 
following expressions for the temperature and velocity fields : 

To = 1-2;  Uo = Ra* sin$ (i-2); V, = 0; Wo = 0. (4) 

Equations of perturbation relative to this flow, deduced from the (l), (2), (3) system 

ae ae 
i3X at 

become : 
Vee-Ra* sin $ (4-2) -+w = - ; 

where 0 and w stand for the perturbations of the temperature and the vertical 
component of the filtration velocity superimposed on the basic flow (4). 

Developing these perturbations into complex exponential functions of the spatial 
coordinates x ,  y and of time t and eliminating w in (5)  and (6), the previous set of 
equations is reduced to one equation in 8: 

(D2-82)2 8-n(D2-sa) O-Ra* cos$ 8*8-isZ Ra* sin $ [(i-z) (D2-82)O-De] = 0, 
(7) 

in which 8, represents the Component of the wavenumber 8 = (8:+8:)4 of the 
perturbation in the direction of the slope, and D = d/dz. 

The principle of stability exchange having been satisfied for the problem in 
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consideration, the marginal stability is then defined by = 0 and the problem of 
eigenvalues (7) can be solved by means of the Galerkin method, developing B in the 

B =  Z a k s i n ( h z ) .  
following form : N 

k-1 

By substitution, (7) can be written in the form: 

] ' l k  
( 1 2 x 2  + s2)2 

k-1 { p a *  cos+- 52 

say L(ak) = 0, giving a homogeneous linear system only accepting a non-zero solution 
for a particular value of Ra* such that det L = 0. 

Although the research on these values, and more particularly on the critical ones, 
has been done by solving (8) numerically up to the rank N = 10 useful information 
can be drawn by considering the approximation to rank N = 2. Indeed, if we take 
s = x ,  for this rank of approximation, (8) becomes: 

(9) 
s i  3136 
x4 81 

(Ra* cos q5 -4x2)  (Ra* cot3 q5 - 25x2) + Ra*2 sin2 $ - - - - 0. 

Ra* cos q5 N 4x2+ 35: tan2 $. 

So, when q5 tends to zero, 

(10) 

This relation, which gives an instability condition of the basic solution (q, V,) 
shows immediately that the longitudinal coils (s, = 0) are more stable than the 
transversal ones or the polyhedral cells (s, =I= 0). Moreover, from work on the solution 
of (9), as a function of the slope, it can be seen that this equation will no longer give 
a real solution beyond a critical angle value say q5t. This result, the main consequence 
of which is to exclude solutions other than s, = 0 beyond a certain value of the slope, 
is in agreement with the experimental observations confirming the presence of the 
single longitudinal coils within a given range of the q5 variation. 

At the rank N, the real solutions of the equation det IL = 0 are all included between 

for $ = 0. When q5 increases, Ra: tends to infinity and the function Ra: is asymptotic 
to the value q5 = q5t. The critical value of the transition coincides with the minimum 
value of Ra: as a function of s, that is to say: 

Ra,*(q5) = min Ra:($). 
8 

Further work on this, after theoretical computation, leads to the results for the 
wavenumber and the critical Rayleigh number given in table 1, for the approximations 
N =  5 and N = 8 and with 

Ra,* sc Ra? = - and sL = -. 
x R 

The limiting angle dt for which the solution corresponding to transverse rolls 
s = s, + 0 no longer exists, is found to be equal to q5t = 31" 48' for the approximation 
N = 8 .  

According to experimental Observations, the analysis of three-dimensional linear 
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4 8L 

0 1 
5 0.998 

10 0.993 
15 0.984 
20 0.965 
25 0.94 
30 0.88 

Ra: ( N  = 5) 

4 
4.0232 
4.0976 
4.2401 
4.4938 
4.9818 
6.3675 

TABLE 1 

Ra: ( N  = 8) 

4 
4.0232 
4.0976 
4.2402 
4.4940 
4.9820 
6.3680 

Ra* 

150 

100 

50 

4n 

Polyhedric cells 

10 
A = 5  

Helicoidal cells 

Unice lar flow 

i A 
1 t 

0 30 60 9 0 4  
FIQTJRE 2. Criteria for transition between the different types of flow. 

stability enables three flow domains to be distinguished in the (Ru*, $)-plane (see 
figure 2): 

(i) for Ra* and $ such that Ra* cos $ < 4xB only the basic two-dimensional 
unicellular flow T,, U, remains; 

(ii) when the Ra*, 4 couple is such that Ru* cos $ > 4n2, the s + 0 three-dimen- 
sional flow becomes steady, and the Ra* cos $ = 4x2 condition, previously found by 
Bories & Monferran (1972), corresponding to the appearance of a flow in longitudinal 
coils, is confirmed well by the analysis taking 8, = 0 ;  

(iii) taking Ru* and $ giving representative points located over the transition 
defined by (8), the flow can be steady with transverse rolls s = s, =I= 0 and, more 
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4t 
I I I t 

generally, with polyhedral cells 8 = (a:+ si)i with 8, + 0 and sY + 0, corresponding 
to the superimposition of several groups of rolls. 

When the angle # increases, at a fixed Ra*, the transition between polyhedral cells 
or transverse and longitudinal rolls is illustrated in figure 3,  showing the stretching 
of the cells (decrease of the wavenumber component along the Ox direction as a 
function of the inclination). 

3.2. Flow stability in a layer of finite extension A 
According to the modifications introduced to the basic flow by the variations of the 
lateral dimension A ,  the stability criterion Ra* COS q5 = 4x2 is no longer satisfied when 
the extension of the layer in the direction of the inclination takes finite values. In  
order to determine the influence of this parameter upon the stability of unicellular 
flow, it is first necessary to determine the new field T,, V, to be introduced into the 
perturbation equations. Noting that, in this case, V, has two components which are 
not zero, say: V, = U,e,+W,e,, this has been determined from (1)-(3) using the 
Galerkin method described in 54. 

Restricting the approximation rank to N = 2, the solution of the basic flow can 
be written as follows: 

T, = ( l - z )+a , ,  sin 2xz+a,, cos nx sin xz; 

U, = -Ra*x2A2b,, sin x x  COB xz; 

W, = Ra*x2b,, COB xx sin xz; 

( 1 1 )  

(12)  

(13)  

where the coefficients depending on the @a*, 4) couple can be written as follows: 

'I a,, = -iRa*xa,, b,, ; 

1+a02x. 
1/A2+ 1 ' 

a,, = Ra*b,, 

16A sin q5 
x3 

bI1 xz( 1 + A2) = cos q5 a,, - (1 +%a,,). 
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Hence, we have 

Substituting the basic solution (1 1 )-( 13) into the linearized equations of the 
perturbation gives the following set of equations : 

-Vx+Ra*ke-v = 0; (17) 

corresponding to the rewriting of (1)-(3) using an orthogonal reference system with 
differently distorted coordinates. 8, o, x stand for the temperature, velocity and 
pressure perturbations respectively with v = ue, + weg + we3. 

The transition we are searching for corresponds to the change from a unicellular 
regime to longitudinal coils. In  this case the perturbations are taken as two-dimensional 
and then the horizontal component of the velocity perturbation is equal to zero 

The solution of the eigenvalue problem is carried out by adopting the following 
(u = 0). 

forms : 
N 

k-1 
8 = cos mxy X Ak sin hz; (19) 

N 

k-1 
2) = - Ra*n2B2m sin mxy Z kBk cos hz; 

N 

k-1 
w = Ra*x2m2 cos mxy X B, sin h z ;  

where A,  and B,, coefficients which are indeterminate using linear theory, are related 
by 

B, = [xg(B212 + ma)]-' cos 4 A, = Kl A,, (22) 

derived from the motion equation. 
The solutions which satisfy the boundary conditions are : 

w = O  inz=O,  1;  
O = O  inz=O,  1;  

w = o  i n y = O , l ;  

(23) 

--- - 0  i n x = y = O a n d x = y = l ;  ae ae 
ax ay 
_ -  

and the continuity equation (16) leads to the following expression of the energy 
equation : 

x2A, + Ra* xem2Bl - Ra* x3m2a02(Bl+2 + B,-, - B2-l), 
dt 
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which can also be written, according to (22): 
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If the marginal state is defhed by detQ = 0 at the second order, an explicit 
instability criterion of flow is obtained : 

Ra* cos q5 = (24) 

The ao2 value characterizing the basic flow referring to pure conduction is given by : 

"2(1Af,A2)2]2+(16A tan q5 Ra:) (1 = 0 ,  

with Ra,* = x 2  (1 +$) (1  +$). 
It can be shown that the ao2 coefficient varies between 0 and l / x  and when the 

aspect ratio A tends to infinity ao2 approaches zero. Therefore we can find again the 
classical criterion of stability : Ra* cos q5 = 4x2. 

The results of the work done on stability are shown in figure 2 for different values 
of A. It can be observed that, with a given angle, the critical Rayleigh number is 
always greater than Ra* cos q5 = 4x2, corresponding to an ( A + m )  infinite aspect 
ratio. This result emphasizes the stabilizing role of the confinement effect which 
enhances the unicellular flow in agreement with what has been shown by Jaffrennou 
and Bories (1974). 

3.3. Stability of the reversed flow 

When the porous layer is slightly inclined with respect to the horizontal line, the flow 
which takes place spontaneously is of unicellular type, rotating in the positive 
direction (upward current along the lower hot surface and downward current along 
the upper cold surface. If the Rayleigh number is lower than the critical value, which 
corresponds to the setting up of longitudinal rolls, the flow remains steady for the 
whole range of variation of the angle of inclination. 

The two-dimensional numerical studies, of Walch & Dulieu (1981) and Caltagirone 
(1981), which enable a solution to be presented which corresponds to an inverse 
unicellular flow, characterized by a circulation in the negative direction, could exist 
in a porous cavity with aspect ratio A = 1.  The conditions for the existence of this 
solution have been examined in a general case for some values of A greater than 1. 

The algebraic equation which enables us to study the stability conditions on this 
flow, is a cubic equation, where the a,, coefficient is a variable, which represents the 
amplitude of the unicellular convective roll. Deduced from the three expressions (14) 
which give the relations between ao2, all, b,,, this equation is written as follows: 

in2 Ra*2 cos2 q5 + Ra*2 sin2 q5 - 16A2 (1 +$)} 
9x2 

+a:, (fA Ra*2 sin q5 cos q5- Ra* sin q5 - 8;A (1  ;t2)2} 
160A2 x4( I + A2)3 

+ A2 3x4 +a,, { - Ra* cos q5x2( 1 + A2) - Ra*2 sin2 q5 - 

= 0. (25) 
16A( 1 +A2) + Ra* sin q5 x 
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I 

I 4n= 1 * 
60 

FIGURE 4. Amplitude of the a,, mode as a function of the Rayleigh 
number for several values of the angle q5 and A = 1. 

Ra8 40 50 

Where the aspect ratio is equal to 1 and q5 to zero, we obtain: 

16(Ra*-44x2) 
Ra*2 ' 

a:1 = 

which is illustrated in figure 4 by the existence of a roll which is able to rotate 
symmetrically in either direction from the bifurcation point Ra* = 4n2. 

Three real solutions exist for the same value of the aspect ratio and for small angles: 
a solution corresponding to a positive unicellular flow and two solutions corresponding 
to a unicellular flow the direction of circulation one of which is the reverse of the 
preceding one. When the angle q5 increases, the transition point (figure 4 )  at which 
these reverse solutions appears, is shifted towards large values of the Rayleigh 
number; when the angle of inclination is greater than about 6", there is no longer 
a possibility of this flow existing. 

All of these results have been confirmed by two-dimensional numerical computations 
($4)  which have demonstrated in particular that the value of the a,, coefficient found 
in this case was very close to the one calculated from the algebraic equation (25). 

The influence of the extension A is, as observed for q5, a shifting of the transition 
point which corresponds to the existence of reversed solutions, towards large values 
of the Rayleigh number. As can be seen in figure 5 at A = 2, this result implies that 
the reverse flow can no longer exist when A increases. 
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t- 
Negative unicellular flow 

c 
I I I 

20 40 60 80 100 

FIGURE 5. Amplitude of the a,, mode &a a function of the Rayleigh 
number for several values of the angle 4 and A = 2. 

R a e  

4. Two- and three-dimensional solutions 
4.1. The general numerical procedure 

The set of equations (1)-(3) has been solved numerically using a spectral method, the 
Galerkin mathematically based method, the setting up of which has been presented 
in a general case by Gottlieb and Orszag (1977). Expressions are developed for the 
temperature and the three velocity components using the following trial functions : 

L M N  

1-0 m-0 n-0 
T =  ( l - z ) + x  Z Z almn( t )cos lxxcosmxys innxz;  (27 1 

L M N  

1-1 m-o n-1 
U = -Aa Z Z Z blmn In x2 sin 1x5 cos rnxy cos n m ;  (28) 

L M N  

V = Ba Z Z Z blmn mnxz cos lxx  sin mxy cos nxz; (29) 
1-0 m-0 n-1 

L M N  

1-0 m-0 n-1 
W = Z x x blmn (Za+m2) x2 cos lxx cos mxy sin nz. (30) 

These satisfy the boundary conditions given in figure 1 as well as the continuity 
equation (1). The method consists of finding the remainder by means of trial functions 
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and integrating over the whole volume. The pressure terms are eliminated by 
applying the divergence theorem and by taking into account the continuity equation. 
The equation of motion (3) allows the determination of the explicit relationships 
between the bgjk and aUk coefficients: 

(is + j2) 
b,, = Ra* COB # (A2i2k2 + BBj2kZ + ( i 2  + j 2 ) 2 )  a{jk 

16A 
(A2k2 + i 2 )  i 2 h 6  '&2p-I 'k,2p-1 

- Ra* sin q5 

(31) 
L N  1 6Ai2kdi+, S v - 1  8k-,&, 2,,-1 

(A2i2k2 + B2j2k2 + (i2 +j2)2) (P - i2 )  (k2 - n2) 7t4 ' -Ra* sin # Z Z aZ5,, 
1-0 R-1 

where S,,,,-, = 1 if i is odd and S,,,,-, = 0 if i is even. 

system is obtained: 
If (27)-(30) are introduced into the energy equation, the following differential 

dt 7t2a,,,+(i2+j2) x%,,,--M(a, b) ,  

where N is a nonlinear operator corresponding to the convective term V V T .  The 
initial conditions are represented by the temperature coefficients a,,(O). 

The nonlinear term of this system which corresponds to V V T  can be processed 
in different ways: either the convolution product is analytically calculated and 
introduced into the differential system or the V-VT product is obtained in the 
physical plane by first calculating V separately and then by coming back to the 
spectral plane using an inverse transform. The use of the FFT (fast Fourier 
transforms) for the calculation of the nonlinear terms reduces the computing time 
by a factor that can rise up to two orders of magnitude at approximations of relatively 
high order. Whichever type of processing may be chosen a nonlinear differential 
system in the spectral plane has to be solved, in which unknowns are the aUk 
coefficients (Caltagirone, Meyer t Mojtabi 1981 ; Straus & Schubert 1979). 

The temporal resolution of the system (32) is made either by a fourth-order 
(RungeKutta) integration method, or by a second-order method of Adams- 
Bashforth type; both methods are explicit and only converge for relatively small 
timesteps which partially depend on the number of equations to integrate. The initial 
conditions of the at,k coefficients correspond to the superposition of the temperature 
perturbation upon the pure conduction state 

The transient term of the system (32) is eliminated when the Rayleigh number is 
relatively small (Ra* < 250), since it is then obvious that the solution converges to 
a stationary state. The a,,k coefficients are obtained by resolving the nonlinear 
algebraic system, using the Newton-Raphson method, and introducing as starting 
coefficients some obtained at a smaller approximation. It must be noted that this 
process induces the flow structure a priori. 

The expressions (27)-(30) being limited, the problem is to choose the number of 
terms to calculate, and to define an accuracy on any arbitrary quantity, which can 
be the heat transfer characterized by the Nusselt number. The number of terms chosen 
for each expression depends on the Rayleigh number and the A and B aspect ratios 
for a given accuracy of the Nusselt number. The higher the Rayleigh number, the 
greater the number of terms used, taking into account that it is necessary to represent 
some eventual micro-rolls generating oscillations, or even turbulence. 

= 1 -2. 
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The total heat transfer between the isothermal areas can be obtained from the 
temperature expression (27) : 

One of the advantages of the Galerkin method used in this paper is that it is 
characterized by a semi-analytical form where some of the coefficients of the 
expressions can recreate the thermal field. Eventually this can be easily introduced 
into the perturbation equations in order to study the stability problem. 

The calculations have been computed on IBM 3033 and CRAY 1.  

4.2. Two-dimensional solutions 
The solution of the two-dimensional flow can be obtained by setting m = 0 in 
(27)-(30). The results of the two-dimensional model have been compared with those 
of a finite-difference model, based upon the alternating directions algorithms (ADI) 
and the 'odd-even reduction' method (Horne k Caltagirone 1980), which uses up to 
65 x 65 grids. The results are very close and will be discussed below. 

Where one is looking for a very accurate solution of the unicellular flow concerning 
relatively small angles and with very short computation times, the temperature and 
velocity fields can be expressed as a function of the slope angle or, correspondingly, 
the atk and b,, coefficients can be expressed as follows: 

Introduction of these expressions into the momentum equation, or into (31), 
provides the relation between the bik and a&, say: 

8-1 R 

r-1 1 n 

Substitution of (34)-(35) and the expression for b:k into the energy equation (32) 
gives : 

i 2  -LRa* (A2k2 + i 2 )  - ($ + k 2 )  n2]  aik 

'8 ,2p- , (  - 1)'+' 16A i 2  = -  
S !  (A2k2 + i 2 )  n3k 'i,2P-1 'k ,Pp-l+ (A2k2 + i2) 

where the last term corresponds to the nonlinear term relating to the convective 
transport. 



Natural convective flow in an inclined porous layer 279 

2.2 I b 

5" 10" 15" 20" + 
FIQURE 0. Variation of Nusselt number as a function of the angle for Ra* = 100, A = 2. 

The first term aik can be easily calculated: 

The successive coefficients of the series are then calculated from (37). This explicit 
procedure can be easily programmed and needs a very short computing time (Walker 
& Homsy 1978). Once the & coefficients are known, they can be used to recreate 
the temperature field, to computer b& and then to obtain the velocity field 
V = U ( z ,  z )  el + W(s,  z )  e,. The expression rapidly converges at angles of inclination 
$ less than 20' for which the Nusselt number is within 1 yo of the value given by the 
classical modelling. 

5. Results 
5.1. Results of the two-dimensional modelling 

The calculations, which have been made in parallel using numerical models based 
either on the Galerkin method or on the finite-difference method, give approximately 
the same results when the number of degrees of freedom is great enough. The 
two-dimensional calculations are done in the following way : an arbitrary temperature 
distribution is given as the initial condition of the evolutive problem. This one is 
written as follows: T = (1 - z )  +a cos (/37cx) sin xz, 

where a and /? are coefficients, a generally having a value of 0.05 or 0.1 and /3 being 
greater than the cell aspect ratio. This condition allows initiation of /3 convective rolls 
in the layer, some of them being damped out with time. 

Figure 6 shows the evolution of the Nusselt number as a function of the $ slope 
at a Rayleigh number Ru* = 100 and an aspect ratio A = 2. For small angles, the 
calculation leads to a stationary state consisting of three contra-rotating cells. Both 
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A 
Nu' 

5 Rolls 

I 

I 
I 
I 

2.5- 

Unicellular 

2- !/-- 
1.5 - 

1 c 

0" 20° 40" 60" 80" $ 

FIGURE 7. Variation of Nuseelt number as a function of the angle for Ra* = 100, A = 4. 

A 
Nu' 

1.3 '1- 

20" 4b" 80' 9 

FIGURE 8. Variation of Nusselt number as a function of the angle for Ra* = 100,  A = 8. 

of the outer cells rotate in positive directions. When the angle #J increases, the Nusselt 
number slightly decreases, and a sudden transition appears at an angle ranging 
between 10" 6' and 1 1". At this #J value, the flow becomes unicellular and the Nusselt 
number greatly decreases. If the angle q5 continues to increase, the flow remains 
unicellular and the Nusselt number increases to #J = 90". 

At a similar value of the Rayleigh number, Ra* = 100, but, with A = 4, the same 
phenomenon occurs (figure 7) and five-cell, then three-cell, and finally unicellular, 
flows evolve aa the slope increases. It will be noted that, in this case, the transition 
between the tricellular and the unicellular flow is obtained at 28" instead of 10" 8' 
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sr -- 

FIGURE 9. Isotherms and streamlines for various # values, Ra* = 100, A = 8. 

for A = 2, and that during this transition the Nusselt number decreases sharply from 
2.6 to 1.9 before increasing slowly. 

Keeping the Rayleigh number equal to 100, calculations for A = 8 show the flow 
transitions passing from nine, to seven, then five cells before degenerating into a 
single cell a t  an angle 4, varying from 30' to 32'. The temperature field and the 
streamlines associated with this series of transitions are represented in figure 9 
and the corresponding evolution of the Nusselt number in figure 8. 

To summarize, the results for two-dimensional convection in an inclined porous 
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FIQURE 10. Isotherm T = 0.5 for A = 3, B = 3, Ra* = 100, 
q5 = 20". Initial conditions are longitudinal coils. 

layer enable us to illustrate the different transitions which explain the number of rolls 
decreasing at odd values when the angle 9 increases, and also to find the critical value 
of the slope #t corresponding to the change of the flow from transverse rolls to 
unicellular flow. Depending on the aspect ratio A,  this value tends rapidly towards 
31' for large aspect ratios, the values corresponding well with the results obtained 
from the linear analysis of the unicellular flow stability, #t = 31' 48', presented in $3. 

This excellent correlation is due largely to the fact that the flow outside the 
immediate vicinity of the ends tends rapidly towards the analytical solution U,, 
introduced in the perturbation equations. As mentioned by Jaffrennou and Bories 
(1974), we have observed that, when the aspect ratio of the layer decreases, the effect 
of the longitudinal confinement can be described by the mean value of the temperature 
gradient along this axis. 

5.2. Remlts of the three-dimensional modelling 
The numerical modelling presented in $4.1 enables us to get some results concerning 
the flow configurations that can be developed in porous layers having respectively 
the parameters (A = 3, B = 3), ( A  = 6, B = 4), and (A = 8, B = 4). The value of the 
Rayleigh number, Ra* = 100, has been chosen in order to observe well-developed but 
stationary flows. The results obtained allow us to confirm: 

(i) the existence of a unicellular flow when the angle of inclination is close to 90°. 
This flow is established, for the three sets of parameters considered, as the initial 
temperature field corresponding to a pure-conduction situation is perturbed by a 
white noise (aij,(0) = ; 

(ii) the existence of a flow with longitudinal coils. Whatever the type of initial 
conditions imposed, this flow naturally evolves during the period when the value of 
the angle of inclination is effectively included in domain 111 of the stability diagram 
(figure 2) ; 
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FIQURE 12. Variation of Nusselt number for various 4 values, for Ra* = 100, A = 3, B = 3. 

(iii) the existence of more complex three-tlimensional flow structures, mainly 
characterized by transverse rolls or by the superposition of transverse and longitudinal 
rolls, for slope angles included in domain I1 in figure 2. 

It is worth noting, however, that for the latter values of the slope (domain 11) it  
was obdrved that the hal configuration was largely dependent on the temperature 
field which wm given as an initial condition by means of the at,&. modes. This is 
particularly true for the cavity with parameters (A = 3, B = 3), in which it was 
verified that several induced three-dimensional structures, characterized by the at,& 
modes, do converge to a stable solution of this type. 

10 FLY 1% 
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FIQURE 13. Evolution of the isotherm T = 0.5 over time, for A = 6, B = 4, Ra* = 100, q5 = 30". 

All these results, which essentially correspond to the theoretical predictions and 
the previous experimental observations (Bories & Combarnous 1973), are illustrated 
(by examples) in figures 10-14. 

Figures 10 and 11 show flow configurations with mainly transverse and longitudinal 
rolls, the visualization of these flows being given by the drawing of the isotherm 0.5. 
Figure 12 shows the evolution of the Nusselt number corresponding to these flows, 
up to the presence of the unicellular flow rate, as a function of the slope. 

Figures 13(a)-(c) follow through a calculation for a white noise at a Rayleigh 
number of 100 and slope angle of 30'. It will be noted that the perturbation of 
longitudinal rolls amplifies from the abscissa, y = 0, on an already developed 
unicellular flow, reaches the opposite side, y = 1,  and becomes connected there with 
the aid of the transverse rolls. The last figure,. 13 (c), shows the stationary regime where 
the transverse structure persists across a small part of the layer. 

In  figure 14 the influence of the initial conditions are illustrated, showing how a, 



Natural convective $ow in an inclined porous layer 285 

FIGURE 14. Isotherm T = 0.5 for A = 6, B = 4, Ra* = 100, = 30' 

NU* Initial condition Final flow # 
0 

10 
10 
20 
20 
20 
20 
30 
46 
60 

2.677 
2.687 
2.695 
2.580 
2.583 
2.617 
2.653 
2.473 
2.169 
1.562 

TABLE 2. Three-dimensional inclined porous layer: Ra* = 100; A = 8; B = 4 

perturbation corresponding to the mode (6,4, l), which is used as an initial condition 
for the same angle q5 = 30°, develops and leads to a stationary state of the same type. 
This influence of the initial conditions on the various observed solutions is all the more 
important as the aspect ratios increase. Therefore, the calculations on CRAY 1, with 
32 x 16 x 8 modes, and considering the mode (13, 7, 1) as an initial condition, which 
corresponds to a superimposed transverse and longitudinal roll structure of either 
(0,5, 1) or (0, 0, l),  lead to the results given in table 2, in which the initial conditions 
of the calculation and the final flow are mentioned. 

As we can see, calculations do not allow us to predict the stationary state to which 
the flow induced by the given initial conditions converges, due to the large number 
of structures that can be found for a single configuration. 

6. Conclusion 
The numerical predictions presented in this paper support the theoretical analysis 

and interpretation of the experimental observations previously done by Bories & 
Monferran (1972), Bories & Combarnous (1973), Jaffrennou & Bories (1974) and 

10-2 
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Walch & Dulieu (1979) on the natural convection in an inclined porous layer. Many 
of the results correspond exactly with those previously obtained: the existence of 
three major flow domains, in the (Ra*, $)-plane; the stabilizing influence of the 
longitudinal confinement on the basic unicellular flow ; and the value of the stability 
criterion of the unicellular flow, equal to Ra* cos $ 4 4x2 and A + m. In addition this 
study introduces new elements in several aretw, particularly : 

(i) the existence of a transition slope $t, characterizing the change of the flow 
domain into polyhedric cells (domain I), or the flow domain of longitudinal rolls 
(domain II), 

(ii) the determining role of the initial conditions in the selection of stationary modes 
when $ is less than $t. 

Limited to and calculated for an infinite extension layer in a three-dimensional 
cam, the theoretical value $t = 31’ 48‘ always differs quite noticeably from the first 
experimental estimations, $texp x 15’. The source of the disagreement (which can be 
initially imputed to the influence of the extension A) is currently being investigated 
by further experimental and numerical studies. 

The authors would like to thank the ‘Centre de Calcul Vectoriel pour la Recherche ’ 
and the ‘Centre Notional Universitaire Sud de Calcul’ for their support and the time 
they provided us for computation. 
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